Copied to
clipboard

G = C335(C2×Q8)  order 432 = 24·33

2nd semidirect product of C33 and C2×Q8 acting via C2×Q8/C2=C23

metabelian, supersoluble, monomial

Aliases: C335(C2×Q8), C3⋊S33Dic6, C32(S3×Dic6), Dic3.5S32, C326(S3×Q8), C322Q82S3, C334Q82C2, C3⋊Dic3.17D6, C6.D6.1S3, C327(C2×Dic6), (C3×Dic3).20D6, C31(Dic3.D6), (C32×C6).11C23, C335C4.2C22, (C32×Dic3).2C22, C2.11S33, C6.11(C2×S32), (C3×C3⋊S3)⋊2Q8, (C2×C3⋊S3).31D6, C339(C2×C4).1C2, (C3×C322Q8)⋊3C2, (Dic3×C3⋊S3).1C2, (C6×C3⋊S3).18C22, (C3×C6).60(C22×S3), (C3×C6.D6).1C2, (C3×C3⋊Dic3).11C22, SmallGroup(432,604)

Series: Derived Chief Lower central Upper central

C1C32×C6 — C335(C2×Q8)
C1C3C32C33C32×C6C32×Dic3C3×C6.D6 — C335(C2×Q8)
C33C32×C6 — C335(C2×Q8)
C1C2

Generators and relations for C335(C2×Q8)
 G = < a,b,c,d,e,f | a3=b3=c3=d2=e4=1, f2=e2, ab=ba, ac=ca, ad=da, eae-1=a-1, af=fa, bc=cb, dbd=ebe-1=b-1, bf=fb, dcd=ece-1=fcf-1=c-1, de=ed, df=fd, fef-1=e-1 >

Subgroups: 1020 in 198 conjugacy classes, 50 normal (18 characteristic)
C1, C2, C2, C3, C3, C3, C4, C22, S3, C6, C6, C6, C2×C4, Q8, C32, C32, C32, Dic3, Dic3, Dic3, C12, D6, C2×C6, C2×Q8, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, Dic6, C4×S3, C2×Dic3, C2×C12, C3×Q8, C33, C3×Dic3, C3×Dic3, C3⋊Dic3, C3⋊Dic3, C3×C12, S3×C6, C2×C3⋊S3, C2×Dic6, S3×Q8, C3×C3⋊S3, C32×C6, S3×Dic3, C6.D6, C6.D6, C322Q8, C322Q8, C3×Dic6, S3×C12, C324Q8, C4×C3⋊S3, C32×Dic3, C32×Dic3, C3×C3⋊Dic3, C335C4, C6×C3⋊S3, S3×Dic6, Dic3.D6, C3×C6.D6, C3×C322Q8, Dic3×C3⋊S3, C334Q8, C339(C2×C4), C335(C2×Q8)
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2×Q8, Dic6, C22×S3, S32, C2×Dic6, S3×Q8, C2×S32, S3×Dic6, Dic3.D6, S33, C335(C2×Q8)

Smallest permutation representation of C335(C2×Q8)
On 48 points
Generators in S48
(1 45 44)(2 41 46)(3 47 42)(4 43 48)(5 26 22)(6 23 27)(7 28 24)(8 21 25)(9 37 30)(10 31 38)(11 39 32)(12 29 40)(13 18 35)(14 36 19)(15 20 33)(16 34 17)
(1 45 44)(2 41 46)(3 47 42)(4 43 48)(5 22 26)(6 27 23)(7 24 28)(8 25 21)(9 30 37)(10 38 31)(11 32 39)(12 40 29)(13 18 35)(14 36 19)(15 20 33)(16 34 17)
(1 44 45)(2 46 41)(3 42 47)(4 48 43)(5 26 22)(6 23 27)(7 28 24)(8 21 25)(9 30 37)(10 38 31)(11 32 39)(12 40 29)(13 18 35)(14 36 19)(15 20 33)(16 34 17)
(1 8)(2 5)(3 6)(4 7)(9 19)(10 20)(11 17)(12 18)(13 40)(14 37)(15 38)(16 39)(21 45)(22 46)(23 47)(24 48)(25 44)(26 41)(27 42)(28 43)(29 35)(30 36)(31 33)(32 34)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 36 3 34)(2 35 4 33)(5 29 7 31)(6 32 8 30)(9 23 11 21)(10 22 12 24)(13 43 15 41)(14 42 16 44)(17 45 19 47)(18 48 20 46)(25 37 27 39)(26 40 28 38)

G:=sub<Sym(48)| (1,45,44)(2,41,46)(3,47,42)(4,43,48)(5,26,22)(6,23,27)(7,28,24)(8,21,25)(9,37,30)(10,31,38)(11,39,32)(12,29,40)(13,18,35)(14,36,19)(15,20,33)(16,34,17), (1,45,44)(2,41,46)(3,47,42)(4,43,48)(5,22,26)(6,27,23)(7,24,28)(8,25,21)(9,30,37)(10,38,31)(11,32,39)(12,40,29)(13,18,35)(14,36,19)(15,20,33)(16,34,17), (1,44,45)(2,46,41)(3,42,47)(4,48,43)(5,26,22)(6,23,27)(7,28,24)(8,21,25)(9,30,37)(10,38,31)(11,32,39)(12,40,29)(13,18,35)(14,36,19)(15,20,33)(16,34,17), (1,8)(2,5)(3,6)(4,7)(9,19)(10,20)(11,17)(12,18)(13,40)(14,37)(15,38)(16,39)(21,45)(22,46)(23,47)(24,48)(25,44)(26,41)(27,42)(28,43)(29,35)(30,36)(31,33)(32,34), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,36,3,34)(2,35,4,33)(5,29,7,31)(6,32,8,30)(9,23,11,21)(10,22,12,24)(13,43,15,41)(14,42,16,44)(17,45,19,47)(18,48,20,46)(25,37,27,39)(26,40,28,38)>;

G:=Group( (1,45,44)(2,41,46)(3,47,42)(4,43,48)(5,26,22)(6,23,27)(7,28,24)(8,21,25)(9,37,30)(10,31,38)(11,39,32)(12,29,40)(13,18,35)(14,36,19)(15,20,33)(16,34,17), (1,45,44)(2,41,46)(3,47,42)(4,43,48)(5,22,26)(6,27,23)(7,24,28)(8,25,21)(9,30,37)(10,38,31)(11,32,39)(12,40,29)(13,18,35)(14,36,19)(15,20,33)(16,34,17), (1,44,45)(2,46,41)(3,42,47)(4,48,43)(5,26,22)(6,23,27)(7,28,24)(8,21,25)(9,30,37)(10,38,31)(11,32,39)(12,40,29)(13,18,35)(14,36,19)(15,20,33)(16,34,17), (1,8)(2,5)(3,6)(4,7)(9,19)(10,20)(11,17)(12,18)(13,40)(14,37)(15,38)(16,39)(21,45)(22,46)(23,47)(24,48)(25,44)(26,41)(27,42)(28,43)(29,35)(30,36)(31,33)(32,34), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,36,3,34)(2,35,4,33)(5,29,7,31)(6,32,8,30)(9,23,11,21)(10,22,12,24)(13,43,15,41)(14,42,16,44)(17,45,19,47)(18,48,20,46)(25,37,27,39)(26,40,28,38) );

G=PermutationGroup([[(1,45,44),(2,41,46),(3,47,42),(4,43,48),(5,26,22),(6,23,27),(7,28,24),(8,21,25),(9,37,30),(10,31,38),(11,39,32),(12,29,40),(13,18,35),(14,36,19),(15,20,33),(16,34,17)], [(1,45,44),(2,41,46),(3,47,42),(4,43,48),(5,22,26),(6,27,23),(7,24,28),(8,25,21),(9,30,37),(10,38,31),(11,32,39),(12,40,29),(13,18,35),(14,36,19),(15,20,33),(16,34,17)], [(1,44,45),(2,46,41),(3,42,47),(4,48,43),(5,26,22),(6,23,27),(7,28,24),(8,21,25),(9,30,37),(10,38,31),(11,32,39),(12,40,29),(13,18,35),(14,36,19),(15,20,33),(16,34,17)], [(1,8),(2,5),(3,6),(4,7),(9,19),(10,20),(11,17),(12,18),(13,40),(14,37),(15,38),(16,39),(21,45),(22,46),(23,47),(24,48),(25,44),(26,41),(27,42),(28,43),(29,35),(30,36),(31,33),(32,34)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,36,3,34),(2,35,4,33),(5,29,7,31),(6,32,8,30),(9,23,11,21),(10,22,12,24),(13,43,15,41),(14,42,16,44),(17,45,19,47),(18,48,20,46),(25,37,27,39),(26,40,28,38)]])

42 conjugacy classes

class 1 2A2B2C3A3B3C3D3E3F3G4A4B4C4D4E4F6A6B6C6D6E6F6G6H6I12A12B12C12D12E···12N12O12P
order122233333334444446666666661212121212···121212
size1199222444866618185422244481818666612···123636

42 irreducible representations

dim11111122222224444488
type++++++++-+++-+-+-+-
imageC1C2C2C2C2C2S3S3Q8D6D6D6Dic6S32S3×Q8C2×S32S3×Dic6Dic3.D6S33C335(C2×Q8)
kernelC335(C2×Q8)C3×C6.D6C3×C322Q8Dic3×C3⋊S3C334Q8C339(C2×C4)C6.D6C322Q8C3×C3⋊S3C3×Dic3C3⋊Dic3C2×C3⋊S3C3⋊S3Dic3C32C6C3C3C2C1
# reps11212112262143234211

Matrix representation of C335(C2×Q8) in GL8(𝔽13)

10000000
01000000
00100000
00010000
00001000
00000100
0000001212
00000010
,
10000000
01000000
00100000
00010000
000001200
000011200
00000010
00000001
,
10000000
01000000
000120000
001120000
00001000
00000100
00000010
00000001
,
120000000
012000000
00010000
00100000
00000100
00001000
00000010
00000001
,
012000000
10000000
000120000
001200000
000001200
000012000
000000120
00000011
,
80000000
05000000
000120000
001200000
00001000
00000100
000000120
000000012

G:=sub<GL(8,GF(13))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,12,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,1],[8,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12] >;

C335(C2×Q8) in GAP, Magma, Sage, TeX

C_3^3\rtimes_5(C_2\times Q_8)
% in TeX

G:=Group("C3^3:5(C2xQ8)");
// GroupNames label

G:=SmallGroup(432,604);
// by ID

G=gap.SmallGroup(432,604);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,64,254,135,58,298,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^3=c^3=d^2=e^4=1,f^2=e^2,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a^-1,a*f=f*a,b*c=c*b,d*b*d=e*b*e^-1=b^-1,b*f=f*b,d*c*d=e*c*e^-1=f*c*f^-1=c^-1,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽